

Asphalt Institute TAC Evaluation of New PG Specifications

Andrew Hanz, Ph.D., PE

MTE Services, a Division of Mathy Construction
Southeast Asphalt User Producer Group
Charleston, WV
November 19, 2025

Objectives of Task Force

1. Understand recent NCHRP recommendations.
2. Evaluate alternatives from literature.
3. Quantify variability.
4. Assess proposed threshold values and interrelationships.
5. Outreach
 - Final Report
 - AASHTO COMP
 - Regional User-Producer Groups (NCAUPG and SEAUPG in 2025)
 - AMAP

Round Robin Study

Materials

Sample ID	AASHTO M320/M332 Grade	M320/M332 IT Test Temp, °C	NCHRP 9-59 IT Test Temp, °C
A	PG 52-28	16	22 (+6)
B	PG 64-22	25	25
C	PG 64-22	25	25
D	PG 64-22	25	25
E	PG 70-22	28	25 (-3)
F	PG 58V-34	16	19 (+3)
G	PG 64S-22	25	25
H	PG 76E-28	28	22 (-6)

Polymer Modified Asphalt

- 15 Labs (only 4 for ABCD)
- 6 Suppliers
- Blind samples:
 - Collected and distributed by Asphalt Institute.
- Standardized data collection form sent to all labs.

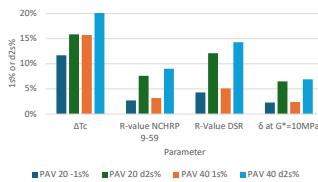
Test Methods

Standard	Test	Additional Instructions
AASHTO T240	Rolling Thin-Film Oven (RTFO) Conditioning	None
AASHTO R28	Pressurized Aging Vessel (PAV) Conditioning, 20- and 40-hours cycles	<ul style="list-style-type: none"> • PAV Temperature selected based on AASHTO M320/M332. • 40-hr PAV in one continuous cycle.
AASHTO T315	Dynamic Shear Rheometer (DSR) Testing	<ul style="list-style-type: none"> • Silicon mold or direct pour allowed. • Prescribed 8mm test temperatures by sample in instructions.
AASHTO T313	Bending Beam Rheometer (BBR) Testing	<ul style="list-style-type: none"> • Vacuum degassing of PAV residue required. • Follow R118 for ΔT_c determination.
AASHTO T387	Asphalt Binder Cracking Device (ABCD) Testing	<ul style="list-style-type: none"> • Cooling rate modified. From 20°C to 0°C = 20°C/hr. • From 0°C to -60°C = 10°C/hr.

Parameters Studied

Parameter	Type	Testing Requirements	Reference
$G^* \sin \delta$	Point	Current Practice	M320/M332
GRP and log GRP	Point	T315 at 9-59 Int. Temp	NCHRP 9-59
R-Value (BBR)	Shape	T313 at Low test temp.	NCHRP 9-59
R-Value (DSR)	Shape	T315 at 9-59 Int. Temp	WHRP
ΔT_c	Shape	R118	NCHRP 9-60
δ at $G^* = 8967$ or 10 MPa	Shape	T315 multiple temps	CTAA
δ Difference	Polymer Identification	δ at 64°C δ at constant G^*	D'Angelo/Bennert
ΔT_f	Failure	T387 (modified)	NCHRP 9-60

- Lack of consensus on shape parameters, many different ideas.
- δ Difference used with δ at Constant G^* for PMAC.


Approaches Investigated

1. NCHRP 9-60
 - ΔT_c (BBR – R118) and ΔT_f (ABCD – T387)
2. NCHRP 9-59
 - GRP at 9-59 IT (T315 – Point Parameter), R-Value at LT (T313 – Shape Parameter)
3. Hybrid Approach
 - GRP at 9-59 IT (T315 – Point Parameter), δ at $G^*=10$ MPa (T315 – Shape Parameter)

Analysis

Challenge #1, ΔT_c Variability

Aging	δ at $G^*=10$ MPa, *		R Value (NCHRP 9-59)		R Value (DSR)		ΔT_c , °C	
	1s%	d2s%	1s%	d2s%	1s%	d2s%	1s%	d2s%
PAV 20	2.3%	6.5%	2.7%	7.6%	4.3%	12.1%	0.7	1.9
PAV 40	2.4%	6.9%	3.2%	9.0%	5.1%	14.3%	1.1	3.1

- Chart reflects variability at NCHRP 9-60 ΔT_c Limits (-6°C to -7°C).
- ΔT_c has highest variability and is most time consuming.
- Other shape parameters provide similar information.

Results

Sample	Aging	NCHRP 9-60		NCHRP 9-59		Phase Angle + GRP	
		ΔT_c , °C	ΔT_c , °C	R-Value	GRP, kPa	Phase Angle at $G^*=10$ MPa, °	GRP, kPa
Limits	PAV 20	-2, -6	7.10	1.5-2.5	5000	42	5000
	PAV 40	-3, -7	3.6	2.0-3.2	8000	38	8000
A, PG 52-28	PAV 20	PASS	N/A	PASS	PASS	PASS	PASS
	PAV 40	PASS	N/A	PASS	PASS	PASS	PASS
B, PG 64-22	PAV 20	PASS	N/A	PASS	PASS	PASS	PASS
	PAV 40	PASS	N/A	FAIL	PASS	PASS	PASS
C, PG 64-22	PAV 20	ABCD Required	FAIL	PASS	PASS	FAIL	PASS
	PAV 40	FAIL	N/A	PASS	FAIL	FAIL	FAIL
D, PG 64-22	PAV 20	ABCD Required	FAIL	PASS	PASS	FAIL	PASS
	PAV 40	FAIL	N/A	PASS	FAIL	FAIL	FAIL
E, PG 70-22	PAV 20	ABCD Required	FAIL	PASS	PASS	FAIL	PASS
	PAV 40	ABCD Required	FAIL	PASS	FAIL	FAIL	FAIL
F, PG 58V-34	PAV 20	PASS	N/A	PASS	PASS	FAIL	PASS
	PAV 40	PASS	N/A	PASS	PASS	FAIL	PASS
G, PG 64-22	PAV 20	PASS	N/A	PASS	PASS	PASS	PASS
	PAV 40	PASS	N/A	PASS	PASS	PASS	PASS
H, PG 76E-28	PAV 20	ABCD Required	PASS	PASS	PASS	FAIL	PASS
	PAV 40	ABCD Required	PASS	PASS	PASS	FAIL	PASS

Introduction

- Outcomes vary by approach, particularly for shape parameters.
 - NCHRP 9-59 R value was least sensitive. One sample failed because it was too low. (High R Value = Poor relaxation).
 - δ at $G^*=10$ MPa flagged a majority of samples (10/16), ΔT_c flagged 8/16 samples.
- Challenges Identified
 - Variability of specific parameters.
 - Polymer modification.
 - Reconciling limits.
 - Intermediate test temperature selection.

Figure 4 - Silicone Mold-ABCD Ring Assembly

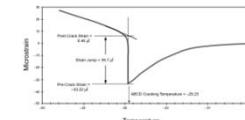


Figure 5 - Typical ABCD Test Results: Stress versus Temperature

Taken from AASHTO T387

Challenge #2

ABCD Test

- Total Test Time = 7 hours.
 - Cooling rate used in study was 20°C/hr from 20°C to 0°C + 10°C/hr from 0°C to -60°C.
- Commercially available machine has a chamber that can hold 16 specimens.
- Not commonly available in commercial labs.
 - 4/15 AI RR Labs were able to run the test.
- Research Tool vs. Product Certification

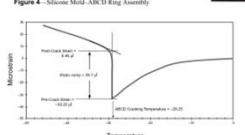
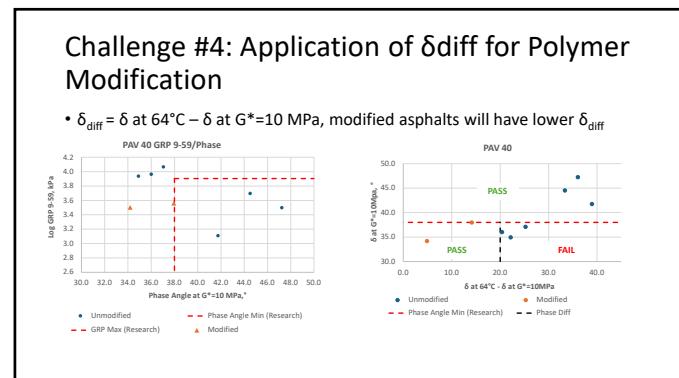
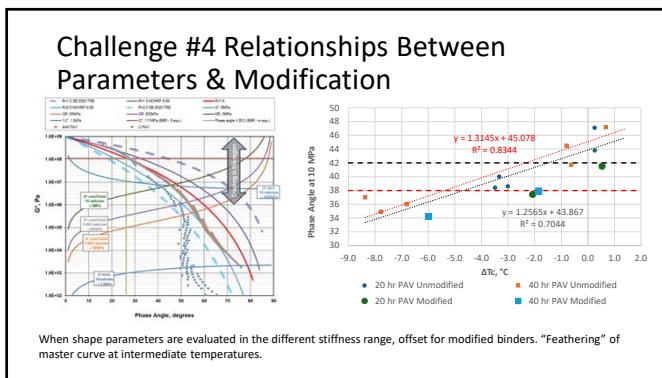
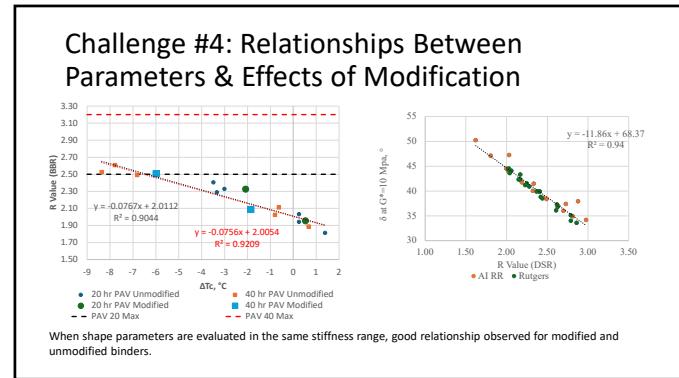
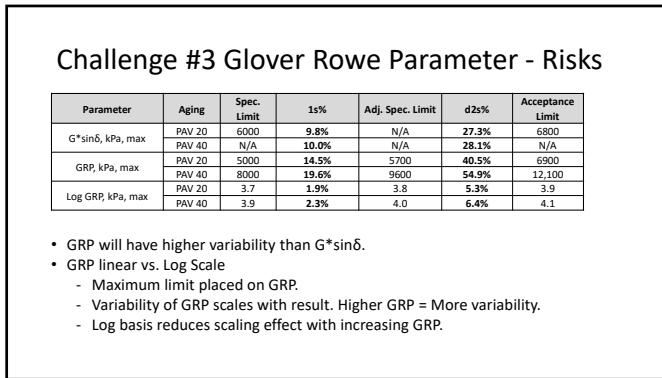
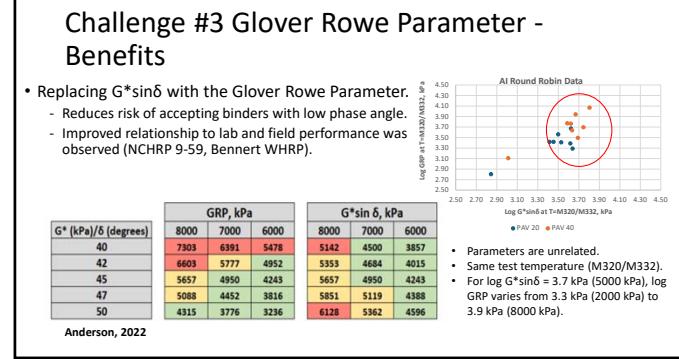
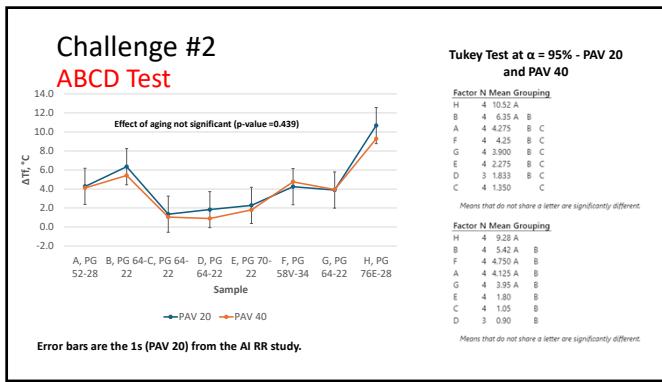
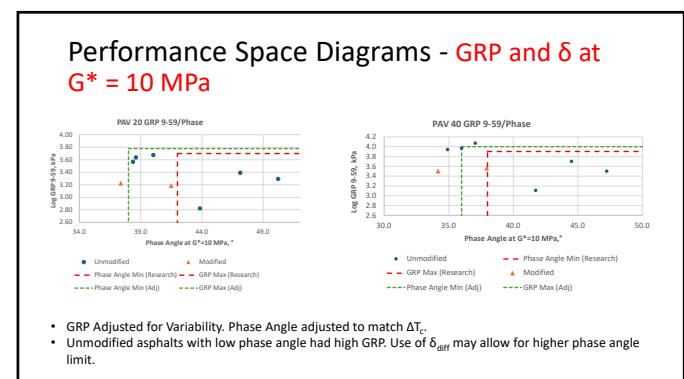
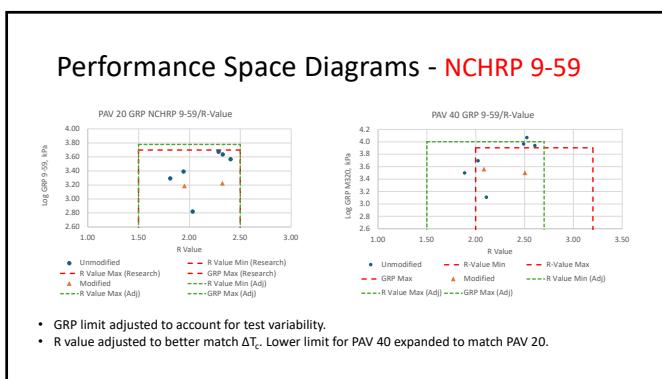
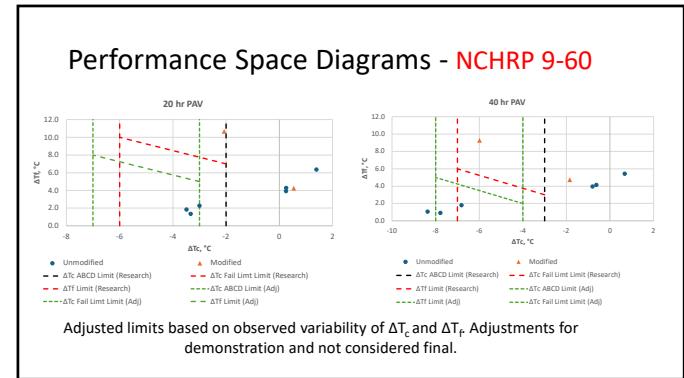
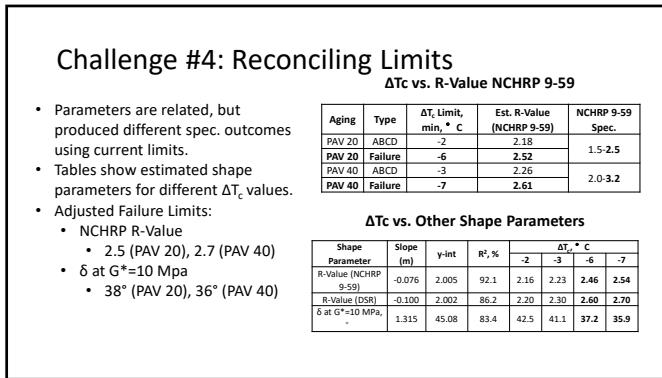
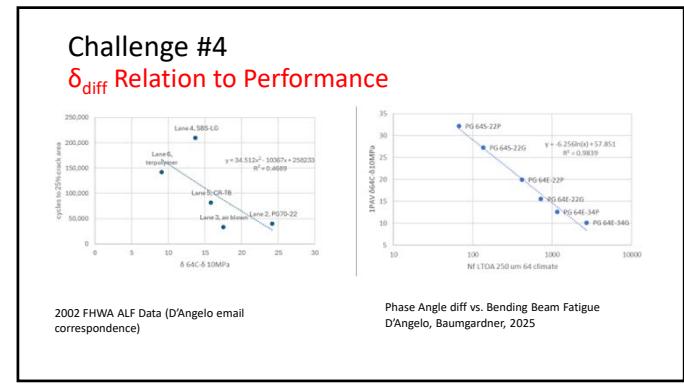
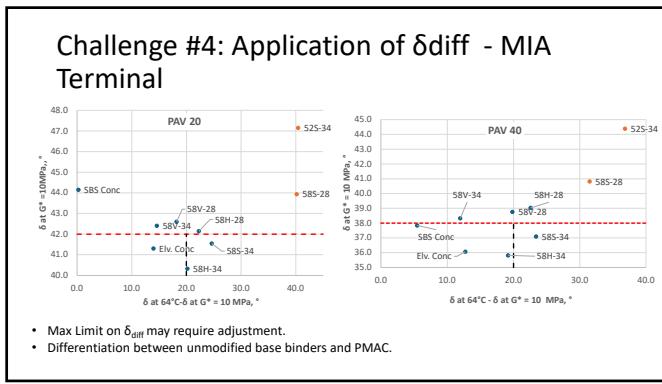
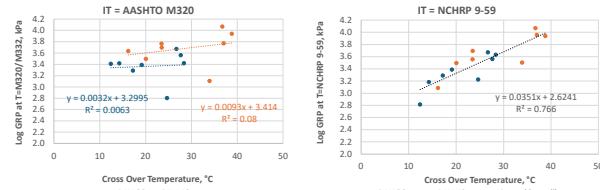














Figure 6 - Typical ABCD Test Results: Stress versus Temperature

Taken from AASHTO T387


Challenge #5: Intermediate Test Temperature Selection

US State Binder Specifications - Asphalt Institute

- M332 has not been implemented by all states. Currently have two different IT Temperatures in specification.
- NCHRP 9-59 recommends basing IT on only LT PG, implementation could cause three different test temperatures for the same product.

Challenge #5 Which Intermediate Temperature is Correct?

- Limited data set. 4/8 samples were PG 64-22 and had same test temperature.
- Cross Over Temperature = Temp where $\delta = 45^\circ$

Recommendations and Discussion

Primary Recommendation

- No changes to current specifications.
 - NCHRP 9-60 is not complete.
 - NCHRP 9-59 acknowledged limits are tentative.
 - Applying proposed limits results in different pass/fail outcomes.
 - Limits for polymer modification require review.
- Final specification requirements.
 - Include a point and shape parameter.
 - Consistency in IT Test Temperature selection.
 - Address polymer modification.
- Asphalt Institute TAC Forming Task Force to evaluate Specification Version 2.0

Future Research and Implementation

- ASTM WK94248 – Possible TFASH Item
 - Procedure for many of the shape parameters discussed.
- Quantify variability of GRP. AASHTO PSP? Other Round Robins?
- Prioritize shape parameters to focus future research.
 - Results may differ based on stiffness range. Discussion on which is correct.
 - Address polymer modification. Phase angle difference?
- Evaluation of the ABCD Test. Is it viable?
 - Variable and time consuming. AI RR data was insensitive to aging.
 - More labs needed.
- Use of 40-hour PAV in specifications.

Goals and Expectations of New Binder Specification

Excerpt from 9-59 Report

performance of flexible pavements. However, fully eliminating all incidences of premature failure caused by fatigue damage is probably impossible, partly because the fatigue phenomenon in asphalt concrete pavements is complex but also because many factors other than asphalt binder properties can affect pavement performance. Factors include binder content; pavement compaction; mixture segregation during construction; and mixture temperature during production, storage, and transport. Binder fatigue performance is only one of many factors that affect the fatigue life of a flexible pavement.

Open Discussion

TRB 2025 Workshop Recap

Scope of changes is much greater than the MSCR test and similar to SHRP Program.

- SHRP Implementation
 - Significant Problem.
 - Consensus solution.
 - Significant long-term funding for research, education, training.
- NCHRP Project
 - Is there a significant problem?
 - Different solutions: NCHRP, other research, state agency adoption.
 - One time funding, no education/training programs in place.

Thank You!

Andrew Hanz

MTE Services, a Division of Matthy Construction
608-347-0871

Andrew.hanz@mteservices.com