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Outline

* Ongoing work
* Performance modeling

* Upcoming tasks
* Applications for WV PMS

* High impact potential for Al applications
* Brainstorming with FHWA

N WestVirginial niversity:

What is Al?

* ...any technology or
machine that can
perform complex tasks
typically associated with
human intelligence, such
as problem-solving,
planning, reasoning, and
decision-making.

N WestVirginial niversity:

Categories of Al

* Machine learning

* learn from data and improve system performance

without being explicitly programmed

* Deep learning
¢ Multi-layered NNs
* Natural language processing
* Computer vision

N WestVirginial niversity:

Pavement Management

Ongoing work...
Performance Modeling and
Unrecorded Maintenance

N WestVirginialUniversity
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FHWA Project Objective

Development of approaches and proof-testing of
adaptive project specific pavement
performance models for PMS from “family”
models for developing prioritization projects.

Leverage information from pavement segment
and family to predict future segment condition

Why not model segment data?
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Data used in project
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Literature Review
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Transfer learning for pavement performance prediction

Pedro Marcelino™, Maria de Lurdes Antunes®, Eduardo Fortunato®, Marta Castilho Gomes®

Highlights
—————— [ | 3 8
P — \ i Two stages: IRl from IRIO and IRI
(source  \Iansferleaming ,, Portuguese Dataset from features.
botee) | Adapted (Target Domain Dataset) | .
| TrAdaBoost | | . 5
''''' P | + Transfer learning perform quite

well in case of few data and at

[Dataset _____[size __|WodelType

LTPP to Portuguese 2807-83 Adapted TrAdaBoost Iong»term forecasts.
* Boosting doesn’t require same
Ann 4,,,, AADT, Pavement Thickness, SN, AA Precipitation IRI distribution and can perform well

where available data is scarce.
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mm (actual PCl measurements) mm2 (PCl measurements+errors)

Synthetic Measurement Data DATA ANALYSIS
i

Y1 Y2 Y3 Ya Y29 Y30 b |
R1 100 82 a2 58 18
o R 98 8 68 54 2
R399 83 8 69 41
Re %9 76 52 8 7
RS 99 9 & 63 48
* ‘mm’ is generated measurements mm3 (PCl measurements + errors + NaNs)
of 500 segments for 30 years. Y1 Y2 Y3 Y4 Y29 Y30
¢ ‘mm2’ we added errors to it R1 100 82 42 58 18 3
* ‘mm3’ we hid some

R2 98

R3 99 8 58 69

R4 99 76 52

R5 99 94 82 63 48 36

measurements.

The challenge... Imputation (NOT PREDICTION) results
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* ML methods are not traditionally designed to deal
with missing data, so how to select features?

Imputation Train ANN on

algorithm + ANN features of the
or LSTM data

Prediction Model FROM IMPUTED 0 .
DATA Example Feature definitions (20+)

wor ANN Predictions vs Actual PCL for target Vi Denoised segment statistics

M, RAISE e

i Definition / How it’s
L2 calculated
£ seg_mean mEEN({7 Glam) e v e B Central level of observed history
Features: Y6,Y7,Y8,Y9,Y10 = Huber»smoothe[(: e o]r; (t_seg, (noise-reduced).
meas|t_sef
Target: Y13 | 1= =
| . slope_first Localbiopeibetue e IETe Early-rate indicator.
T DES points: Ay/At. v i
- = :
slope_last el e (et (B e Recent-rate indicator.

points: Ay/At.

= Median of all pairwise slopes on

I slope_mid_theilsen (t_seg, y.den) (Theil-Sen). Robust overall trend. I

» -
Actual PCTy_test_mm)

last_age Latest observed age in t_seg. Defines window end
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Low-noise synthetic data

=9 | RMSE=1054

Article
P Deep Time-Series Clustering: A Review

Clustering

Ali Algahtani 23*0, Mohammed Ali 30, Xianghua Xie > and Mark W. Jones >
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Challenge moving to DOT Data
...How to Select Target???
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Huber Loss to Denoise?
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Metric to evaluate quality of fit?

Three criteria:

* How well does predicted data fit with measured
segment data from prior years in model
M= logL(xl.’F(x, age))

* How likely is the predicted data to be observed in the
famlly? P(y|¢), where y is predicted data and ¢ is the distribution from the family model

* How likely is predicted data to be part of segment given
the measured data? »(iymeas)

N WestVirginial niversity:
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Objectives and Tasks

* Objective — identify areas of pavement management that
can be enhanced by Al and build prototype tools to
demonstrate their benefits for a subset of those areas.

1. Comprehensively map the pavement management process in WV
and identify key areas that Al can be integrated.
2. Gather data & models for those areas where Al will be investigated.

3. Build prototype Al models and evaluate their performance
compared to traditional pavement management processes

4. Develop a final report and user guides
5. Implementation Support.

Holistic Asset Management and
Accurate Cost Estimation

* Network-level cost estimates for paving projects
are often inaccurate
* neglect the condition of ancillary assets like guardrails,

signage, or drainage, which are only assessed during
costly site visits.

Computer Vision Deep Learning to gﬁ‘r)\_e; rgtzcz csg‘sge:er:zxe
to Evaluate + Categorize proj P A .
Existing Images Condition & Cost gccyfaierallinlishelcost
BUES estimate

Physics-Inf d L Models (PILM) f Are we Iosmg
ysics-Informed Language Models or . .
Advanced Mechanistic-Empirical (ME) Prediction information?
PM

* The Challenge: Current ME models are constrained by pre-
defined transfer functions that limit the complexity of the inputs

they c)an consider from mechanistic models (e.g., only peak Condition Images
strain). .
Distresses
. 'Il'hfe Solt:itifn: move bMeygnId t:’aditiocrlmlfPlNNs thJ Physics- -
nformed Language Models. Instead of just replacing a transfer it
functilon with a neural get\?/ork, uﬁe LLI_:_/Ih's abilztylto plrgce?(s Condition Index
complex sequences and relationships. The model could take
the entire d?stributic_)n of stresses and strains from a mechanistic Performance Model

simulation, along with material properties and environmental
data, as a complex input sequence.

Needs Assessment
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Generative Al for Multi-Modal Pavement
Analysis and Data Augmentation

The Challenge: Pavement management involves a significant loss of
information. Rich visual data from images is condensed into simplified
distress codes (e.g., "medium severity alligator cracking"), which are
then further abstracted into a single condition index. This process loses
critical context about the causes of deterioration and the relationships
between different distress types.

The LLM Solution: Multi-Modal Large Language Models. These models
can process and understand diverse data types—images, sensor
readings (e.g., GPR), historical maintenance text logs, and structured
data—simultaneously. Instead of reducing images to codes, an LLM can
generate rich, descriptive text summaries of pavement condition.

Questions and
Discussion?

James Bryce, Ph.D.

Pat Parsons Faculty Fellow in Asphalt Technology

Wadsworth Department of Civil and
Environmental Engineering
West Virginia University

James.Bryce@wvu.edu
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