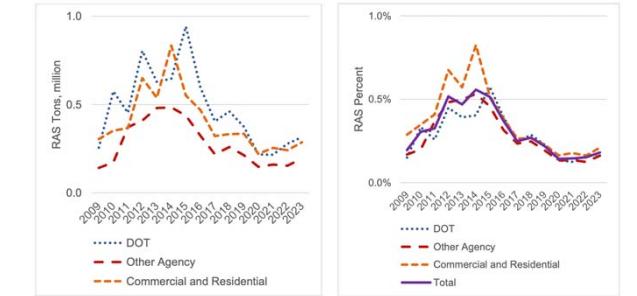


Making RAS Work through Balanced Mix Design

Nam H. Tran, PhD, PE
Associate Director and Research Professor

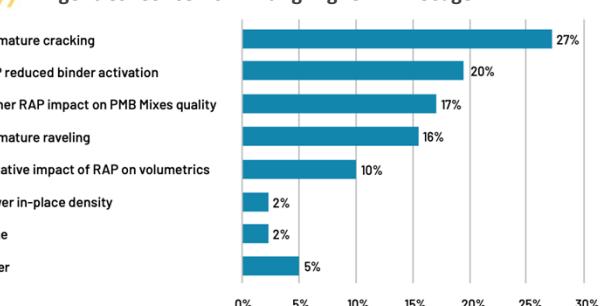
SEAPUG Annual Meeting
November 18 - 20, 2025

Outline

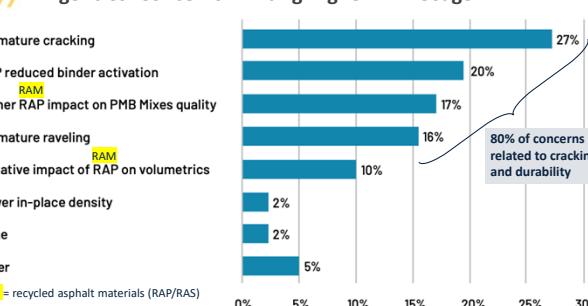

- What is the current use of RAS in asphalt mixtures?
- How has RAS been used over the years?
- What are the concerns about using RAS?
- What steps do we need to take to address these concerns?
- How does RAS fit in balanced mix design?

Use of RAS in 2023

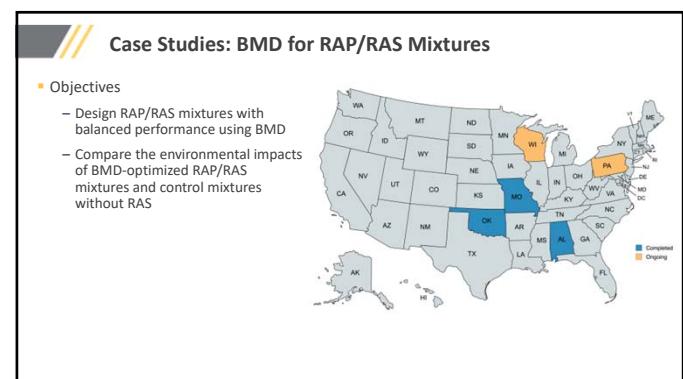
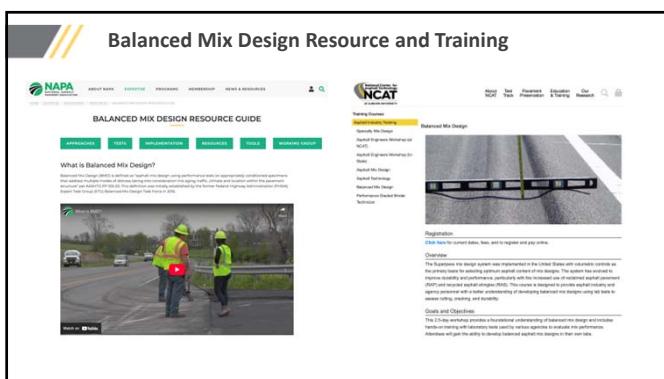
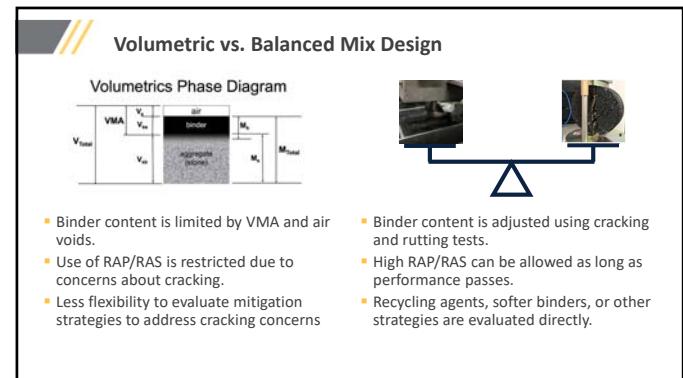
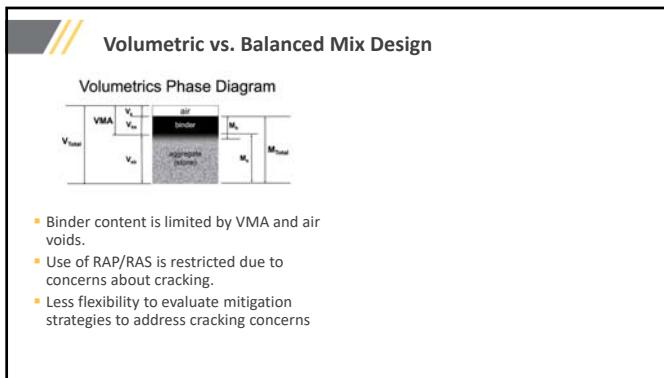
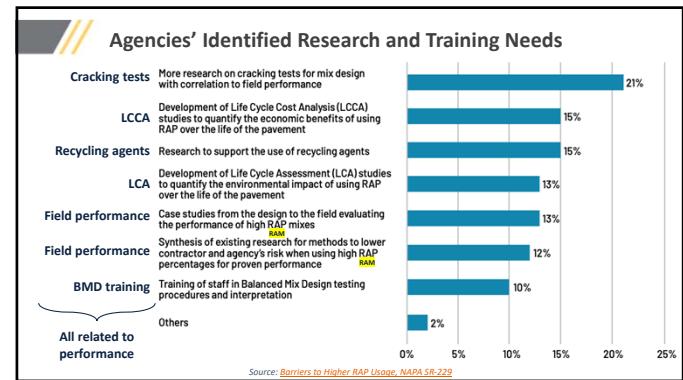
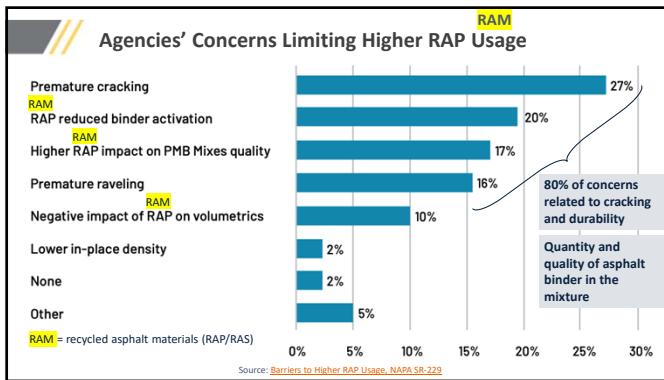
Use of RAS 18% increase in 2023 to 797,000 tons	Nationwide stockpiles 1.18 million tons, a 17% decrease from 2022	Resource savings \$109 million from 159,000 tons of binder and 398,000 tons of aggregate	Environmental benefits 510,000 cubic yards of landfill and \$47 million in gate fees
---	---	--	--


Source: [NAPA Annual Asphalt Pavement Industry Survey, 2023](#)

Use of RAS over the Years


Source: [NAPA Annual Asphalt Pavement Industry Survey, 2023](#)

Agencies' Concerns Limiting Higher RAP Usage

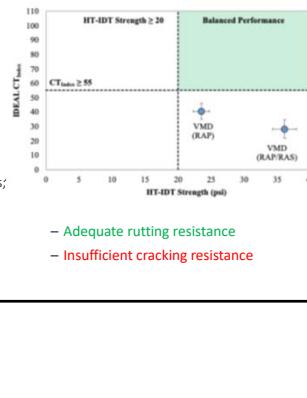






Source: [Barriers to Higher RAP Usage, NAPA SR-229](#)

Agencies' Concerns Limiting Higher RAP Usage

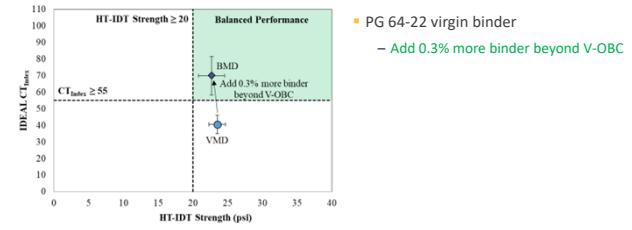
RAM = recycled asphalt materials (RAP/RAS)

Source: [Barriers to Higher RAP Usage, NAPA SR-229](#)

Alabama Case Study

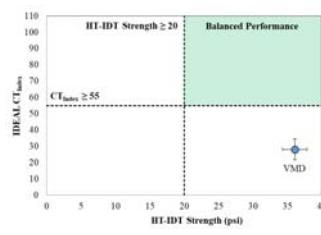

- Volumetrics
 - RAP/RAS maximum 20%, RAS not exceeding 3%
 - 3.5% air voids for mixtures with RAS, and 4.0% air voids for other mixtures
- BMD
 - Rutting: HT-IDT ≥ 20 psi at 50°C
 - Cracking: CT_{Index} $\geq 55, 83$, and 100
 - Aging: 2 hours at 135°C before compaction

Alabama Case Study

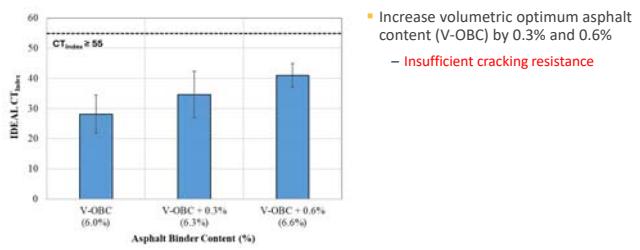

- Volumetrics
 - RAP/RAS maximum 20%, RAS not exceeding 3%
 - 3.5% air voids for mixtures with RAS, and 4.0% air voids for other mixtures
- BMD
 - Rutting: HT-IDT ≥ 20 psi at 50°C
 - Cracking: CT_{Index} $\geq 55, 83$, and 100
 - Aging: 2 hours at 135°C before compaction
- Control: 20% RAP, no RAS
- Experimental: 15% RAP and 5% RAS
 - Increase RAS content from 3% to 5%
- Start with volumetric mix designs
- Optimize mixtures to meet BMD requirements and verify long-term cracking resistance
 - Increasing asphalt content
 - Softer binder
 - Bio-based recycling agent

Volumetric Mix Designs

- Binder grades
 - Virgin binder: PG 64-22
 - RAP binder: hi-temp. true grade = 105.2°C
 - RAS binder: hi-temp. true grade > 176°C
- Volumetric analysis
 - 20% RAP: 5.5% AC (18.2% RBR) at 4.0% voids; 16.5 VMA, 75.8% VFA, 1.1 D/A
 - RAP/RAS: 6.0% AC (29.2% RBR) at 3.5% air voids; 16.0% VMA, 78.2% VFA, 1.1 D/A
 - In compliance with the ALDOT Superpave specification



Balanced Mix Design: 20% RAP Control Mixture



Balanced Mix Design: RAP/RAS Mixture

- Similar to the RAP-only volumetric mix design
 - Adequate rutting resistance
 - Insufficient cracking resistance
- Optimize mixtures to meet BMD by
 - Increasing the asphalt content
 - Using a softer binder
 - Using a recycling agent

Modification #1: Increasing Asphalt Content

Modification #2: Softer Binder

- Step 1: substitute PG 64-22 binder with PG 52-34 binder
- Step 2: increase asphalt content by 0.5%

Modification #3: Recycling Agent

- Add 5.5% RA by weight of total binder
- Pre-blended into virgin binder:
 - PG 64-22 with $-4.0^{\circ}\text{C} \Delta T_c \rightarrow \text{PG 52-34 with } 0.7^{\circ}\text{C} \Delta T_c$
 - Reduced stiffness and improved relaxation property

Long-term Cracking Resistance Evaluation of BMD-optimized Mixtures

BMD-optimized Mixture Comparison

Mix Design	20% RAP	15% RAP, 5% RAS
Cold Feed (%)	#78 Limestone	14
	Limestone Screenings	13
	3/8" Coarse Gravel	30
	Shot gravel	7
	Sand	15
	Baghouse Fines	1
	RAP	20
	RAS	-
Virgin Binder		PG 64-22
Virgin AC (%)		4.8
Additive (% total binder)		0.5 ASA

Comparative Life Cycle Assessment

- LCA Methodology
 - System boundary: Cradle-to-gate
 - Declared unit: 1 short ton
 - Background data: LCA commons
 - LCA method: TRACI 2.1
- RAS processing
 - NAPA PCR assumes 0.1-gallon diesel consumption for one ton processing of RAS
 - This is assumed to be same as RAP processing in the PCR
 - Contractor provided diesel consumption information for front end loaders and Roto chopper for RAS processing

Cradle-to-Gate LCA

- No change in global warming was observed between control and RAP/RAS mixes in the Alabama case study

Oklahoma Case Study

- Volumetrics**
 - No RAP or RAS in surface mixtures
- BMD**
 - Up to 15% RAP (no grade change)
 - Up to 25% RAP (one grade softer)
 - No RAS in surface-course mixtures
 - Air voids relaxed to 3 to 4%
 - Rutting: HWTT N12.5 \geq 10,000 passes at 50°C (PG 64-xx)
 - Cracking: CT_{Index} \geq 100
 - Aging: 4 hours at 135°C before compaction

Oklahoma Case Study

- Volumetrics**
 - No RAP or RAS in surface mixtures
- BMD**
 - Up to 15% RAP (no grade change)
 - Up to 25% RAP (one grade softer)
 - No RAS in surface-course mixtures
 - Air voids relaxed to 3 to 4%
 - Rutting: HWTT N12.5 \geq 10,000 passes at 50°C (PG 64-xx)
 - Cracking: CT_{Index} \geq 100
 - Aging: 4 hours at 135°C before compaction
- Control: virgin mix**
 - Experimental: 7% RAP and 2% RAS
 - RBR = 14%
- Start with volumetric mix designs**
 - Optimize mixtures to meet BMD requirements
 - Using a softer binder
 - Increasing the asphalt content

Volumetric Mix Designs

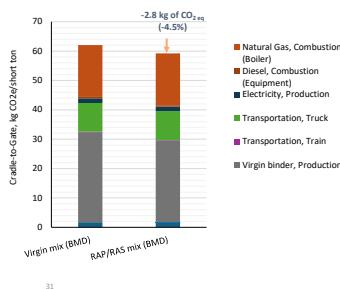
- Binder grades**
 - Virgin binder: PG 64-22
 - RAP binder: hi-temp. true grade = 94.1°C
 - RAS binder: hi-temp. true grade = 151.8°C
- Volumetric analysis**
 - Virgin: 5.0% AC at 4.0% voids; 14.8 VMA, 73.3% VFA, 0.7 D/A
 - RAP/RAS: 5.3% AC (14.0% RBR) at 4.0% air voids; 15.2% VMA, 74.1% VFA, 0.8 D/A
 - In compliance with the ODOT Superpave specification

– Adequate rutting resistance
– Insufficient cracking resistance

Balanced Mix Design: Virgin Control Mixture

– PG 64-22 virgin binder
– Add 0.35% more binder beyond V-OBC

Balanced Mix Design: 7% RAP, 2% RAS Mix


– Change from PG 64-22 to PG 58-28
– Use LAS
– Increase virgin binder content from 5.3% to 5.6%

BMD-optimized Mixture Comparison

Mix Design	Virgin Mix	7% RAP & 2% RAS
Virgin Binder	PG 64-22	PG 58-28
Additive (% total binder)	0.5 ASA	
Total AC (%)	5.4	5.6
Virgin AC (%)	5.4	4.9
RBR (%)		13.3
Air Voids (%)	3.0	3.0
VMA (%)	14.6	15.1
VFA (%)	79.7	80.3
Dust/Asphalt Ratio	0.68	0.70

Cradle-to-Gate LCA

- A reduction of 2.8 kg CO₂/ton of mix was achieved with the use of RAP/RAS
- 4.5% reduction in GWP compared to the control mix

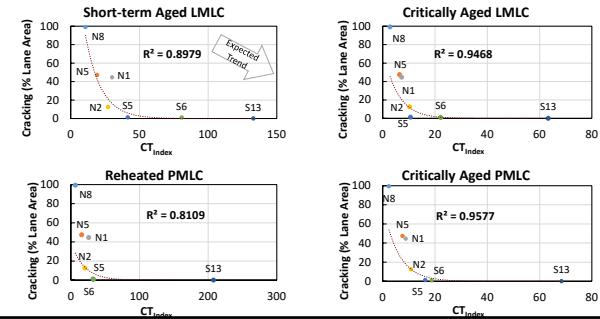
Case Study Findings

- Feasible to design RAP/RAS mixes with balanced performance using BMD
- Alabama and Oklahoma studies
 - RAP/RAS mixtures require cracking mitigation strategies
 - Recycling agent
 - Softer binder
 - Increasing asphalt content
- Missouri study
 - RAS can help meet rutting test requirements
- BMD-optimized RAP/RAS mixtures have slightly lower (4-5%) or similar environmental impacts compared to control mixtures without RAS

Acknowledgments

- Owens Corning
 - Courtney Rice
 - Toni Newsome
- Contractors
 - Alabama
 - Oklahoma
 - Missouri
 - Pennsylvania
 - Wisconsin
- NCAT team
 - Fan Yin
 - Suri Gatiganti
 - Sam Dixon
 - Lam Nguyen
 - Liz Valenca

THANK YOU!


Nam Tran
nam.tran@auburn.edu

Cracking Test Correlation to Test Track Performance

Test and Parameter	Average COV (Repeatability)	Range of R ² (Correlation)
Energy Ratio, ER	Not available	0.03 to 0.28
Texas Overlay Test, β	17%	0.76 to 0.91
NCAT Overlay Test, β	10%	0.79 to 0.97
Louisiana SCB, J_c	20%	0.13 to 0.78
Illinois Flexibility Index Test, FI	34%	0.76 to 0.89
IDEAL Cracking Test, CT_{Index}	18%	0.87 to 0.94
AMPT Cyclic Fatigue, S_{app}	16%	0.89 to 0.90

Correlations of IDEAL-CT Results to Cracking on Test Track

Field Cracking vs. CT_{Index}

100% lane area cracked, lowest CT_{Index} No crack, highest CT_{Index}

ALDOT Mix Design Specifications

- Superpave Specification

- Combined RAP/RAS content limited to 20%, RAS not exceeding 3%
- 3.5% air voids for mixtures containing RAS, and 4.0% air voids for other mixtures
- Minimum VMA and P_b , and dust/asphalt ratio

- BMD Special Provision

- Approach D (BMD Design Only) per AASHTO PP 105
- Minimal requirements on maximum aggregate size and carbonate stone content
- No limits on RAP/RAS content or volumetric properties
- Rutting resistance: High-temp. IDT (ALDOT 458) at 50°C, IDT strength ≥ 20 psi
- Cracking resistance: IDEAL-CT (ALDOT 459) at 25°C, $CT_{Index} \geq 55, 83$, and 100 depending on design traffic

Alabama Case Study

- Modify an existing RAP/RAS mixture to increase RAS content
- Optimize the RAP/RAS mixture to meet BMD requirements and verify long-term cracking resistance
 - Increasing asphalt content
 - Softer binder
 - Bio-based recycling agent
- Conduct comparative life-cycle assessment (LCA) for BMD-optimized RAP/RAS vs. control (20% RAP, no RAS) mixtures