Mobile, Alabama

 Asphalt Binder (and Emulsion)

 Training and Certification

 Nike Anderson, Asphalt Institute

 SEAUPG Annual Meeting

 November 19-21, 2024

 Mobile, AL

Acknowledgments

- Content
 - Bob McGennis, HF Sinclair
 - Mike Beavin, Asphalt Institute
 - Karl Zipf, Delaware DOT (ret.)
 - Pavel Kriz, Imperial Oil/ExxonMobil
- Asphalt Institute's Member Companies

Which Led To:

- Surface Transportation and Uniform Relocation Assistance Act (1987), Section 128
- Strategic Highway Research Program
- · 1987-1993
- \$50 million asphalt research project funded by state DOTs (0.1% of Federal \$ Allocation)
- conducted primarily at universities
- Product was called Superpave
 - <u>Superior Performing Asphalt Pavements</u>
 - <u>P</u>erformance <u>G</u>rade binder spec with <u>new tests</u>
 - mix design system

The Beginning

- Performance Graded (PG) system developed during SHRP program in early 90s

 Shortly after SHRP ended in 1993, Bob McGennis
 - managed a team to develop technical training materials as part of an FHWA project coined the "National Asphalt Training Center" (NATC)

The Beginning

- By 1997, two thirds of states had adopted the PG
- systemSteep learning curve with
- each implementation • State to state
- interpretations of the test methods
- By 2003, only three states had <u>not</u> adopted the PG system

Mobile, Alabama

The Beginning

In 2005, California became the last state to adopt the PG system

 First used January 1, 2006. Used with polymer modified binders January 1, 2007.

• By this time, many states had been using the system for a decade but there was work to do.

- $^{\circ}$ Initially, as with any new system, variability was an issue.
- ° Variability decreased with experience but seemed to stall.
- In 2005, recognizing this slow-down, the Asphalt Institute Technical Advisory Committee recommended development of a national program to address the problem.
 - Based on program used in Northeast by NETTCP

The Beginning

- Work began with Dr. Dave Anderson and the NorthEast Transportation Training and Certification Program.
 - The new National Binder Technician Certification program established reciprocity with the NETTCP
 - Dr. Anderson collaborated with AI on a new manual, Asphalt Binder Testing
 - Became the basis/text for National Binder Technician Certification (NBTC) program

Why a Certification Program?

• Why Certification?

- Code of Federal Regulations
 - 23 CFR, Part 637, Quality Assurance (QA) Procedures for Construction
 - Issued 29 June 1995
 "After June 29, 2000, all sampling and testing data to be used in the acceptance decision or independent assurance program will be executed by qualified
 - decision of independent assurance program will be executed by qualified sampling and testing personnel."
- What does "qualified" mean?

The Beginning

• Doubts about training asphalt binder technicians?

- A big concern
 - What if we train them and they leave?
- A bigger concern
- What if we don't train them and they stay?
- The biggest concern
- What if they are all trained differently?

What Makes a Quality Lab?

- Calibrated Equipment
- Knowledgeable Technicians
- Third-Party Review of Lab Operations
- Proficiency Sample Program Participation
- Quality Management Plan

National Binder Technician Certification (NBTC) Program

AI Certification Vision

To provide a consistent nationwide means of ensuring that asphalt binder technicians are knowledgeable and fully qualified to produce valid specification compliance and quality assurance data.

Mobile, Alabama

National Binder Technician Certification

- Why should technicians become certified? What are the benefits?
 - $^\circ$ Provide a concise standard interpretation of test methods
 - Decrease retesting by improving data quality
 - Promote a consistent laboratory best-practice
 - Increase confidence in data for use in product development
 - Tighten the precision and bias statements in published standards
 - $^{\rm o}$ Help reduce penalties, deducts and disputes

Written Exam

- Open book/note, multiple-choice exam
- 2 hours
- 60 questions
 - Four sections
 - Part 1 General (24 questions)
 - Part 2 Miscellaneous Tests and Aging (16 questions)
 Part 3 DSR
 - Part 5 DSR • Part 4 – BBR
- Must score 80% or better (48 correct)
- Must also score 70% or better on each Part

NBTC Course

- 1.5 days of lecture
- Intended as review, not training
- Covers 12 chapters in MS-25
 - Basic Information
 - Basic concepts, sampling and handling, thermometry, specification and grading
 Chapters 1-6 (Part I)
 - Miscellaneous Tests
 - Rotational Viscosity, Flash Point, Specific Gravity, Plus Tests
 - Aging
 - RTFO, PAV
 - BBR, DSR, DTT

Innovation in 2020

- Virtual courses formed
- Eliminated travel costs to those with limited budgets
- Conducted in smaller chunks of time
 - Better for time-limited personnel
 Reduced screen fatigue
- Allowed technicians to demonstrate proficiency on their own instruments in their own lab
 - $\,\circ\,$ Reduced stress during practical exam demonstrations
- Retesting process simplified
 Previously, a retest was a big deal

Laboratory Proficiency Exam

- Two tests to be demonstrated
 - ° DSR
 - ° BBR
- Why only two?
 - Time
 - \circ Reasoning that a technician that can handle the most complicated procedures (DSR and BBR) can handle the rest
- Rare that experienced technicians fail

Mobile, Alabama

	Acceptable Range of Two Results (d2s%)		
	Old Precision Statement (2005)	New Precision Statement (2019)	
Single Operator (within Lab Variability)			
Original G*/sin δ	6.4	4.6	
RTFO G*/sin δ	9.0	7.2	
PAV G*sin δ	13.8	11.2	
Multilaboratory (between Lab Variability)			
Original G*/sin δ	17.0	10.2	
RTFO G*/sin δ	22.2	16.8	
PAV G*sin δ	40.2	27.4	

Factor			Reason
ermal	Direct Transfer	Mold	Use of molds, 46 °C loading
eometry	8 mm PP*	25 mm PP*	Simple shear, trimming
	2 mm gap	1 mm gap	
rain (%)	0.1	1	Linear viscoelasticity
ample	Naphthenic	Waxy	Hardening tendency
perator	New	Experienced	Experience
icst ma			lomized using Minitab [®] es to calculate standard

MS-25 4 th Edition	
Anticipated March 2025	
 Revisions to all Chapters 	
 Based on changes to standards 	
New Structure	
 Combination of Existing Chapters 	5 and 6
Chapter 5: Introduction to the PG B	inder Specification
 Chapter 6: Specifications and Gradi 	ng
 Some repetitive information 	
 Add AASHTO M332 (MSCR) 	
 Understanding a Standard 	
 AASHTO T240, Rolling Thin-Film Ov 	en (RTFO)

er Technician News		
Edition	Feature Article	
Fall 2016	What Halloween taught me about G*/sinδ	
Summer 2016	MSCR tune up	
Winter 2016	Vacuum Degassing: Yes? No? Maybe?	
Fall 2015	Rushing it: what not to do and why not to do it	
Summer 2015	Don't be a specnoramus	
Spring 2015	A lifetime of learning	
Winter 2015	The NBTC goes global	
Fall 2014	How an idea becomes a standard	
Summer 2014	NBTC: A National Standard	

Edition	Tech Tip
Fall 2016	Getting krafty in your lab
Summer 2016	Take the PRESSURE out of aging
Winter 2016	Building UP
Fall 2015	Making the cut
Summer 2015	A collection of tech tips
Spring 2015	Product review: Lab Lease Paper
Winter 2015	Product review: Brookfield Rotational Rheometer DV3T
Fall 2014	We can hardly "contain" our excitement
Summer 2014	Brought to you by the letter "Q"

