

N8 After Conventional Mill and Inlay

First rehabilitation attempt:

- Milled 5 in, replacing with similar materials as before (as per typical ODOT rehab strategy),
- Included a geotextile interlayer on top of the dense-graded leveling course
- This failed after 4.6 million ESAL, requiring another approach to rehabilitate

1

Oklahom	a I-40, Caddo County - Work History	
Year	Work Description	
1962	Original construction, consisting of:	
	4.5 in, asphalt concrete	
	8 in, sand asphalt	
	6 in, stabilized base	
1975	1.5 in. asphalt concrete overlay	
1980	OGFC (probably 0.75 in)	
	Petromat (paving fabric)	
	Asphalt concrete leveling course (probably around 1.5 in)	
1991	3 in, asphalt concrete, Type B	
	Cold milling (no thickness indicated)	
1996	2.5 in, asphalt concrete Type B, polymer-modified asphalt binder	
	2 in cold milling (outside lanes)	
2007	Novachip (typically 0.5-0.75 in)	
	2 in hot in-place recycling	
2012	Major rehabilitation project	

- Avg. 2021 IRI: 49.97 in/mi (EB), 47.81 in/mi (WB)*
- 2021 AADT = 29,600 with 36% trucks (7% single-unit, 29% combination)
- Recognized in 2022 as a "Perpetual Pavement by Conversion" by the Asphalt Pavement Alliance

Contractor's Perspective - Perpetual Pavements

Our goal is to provide the owner (OTA,ODOT...) with the best project now that will last beyond their expectations, provide a pavement with a maintenance plan, and then recognize owners who have had successes with this strategy.

Contractor's Perspective, Perpetual Pavement Projects

Estimating/bidding:

- Higher risk, expected less competitionTalked to owners prior to bid to get
- expectations
 Looked for VE opportunities to meet those expectations
- Pre-Construction:
- Relocated portable plant close to location
 Cleaned AC tanks thoroughly
- Cleaned AC tanks thoroughly
 Made agreements with AC suppliers
- Looked for the best weather opportunities
- Construction:
 - Used our best equipment (transfer
 - vehicles, compaction...)
 - Minimized any risks we could (don't pave on marginal weather days)
 - ▶ We had QC on site every day
 - Staffed with extra people to make sure all details were monitored

PAY ATTENTION TO

EVERY DETAIL!!!

Potential questions/commentary

- Jay-What difference in time of construction would you estimate if the Okfuskee County project had used CRCP instead of a Perpetual Asphalt Pavement design?
- Jay-Would there have been any difference in how traffic would have been managed during construction?
- David/Larry-Do you anticipate more rehab projects like in Caddo and Canadian Counties?
- David-Is ODOT considering using PG76-28E in future SMA and PFC projects?