

Balanced Mix Design (BMD)

Nominal Max., Size Agg.	0.5 inch (12.5 mm)			0.75 inch (19 mm)			1.0 inch (25 mm)				1.5 inch (37.5 mm)	SMA
Type of Mix	Incidental Raving	Wearing	Course	Wearing	Binder	Course	Binder	Course	Base	ATB*	Base	Wearing
LWT, max. rut-design, mm @ # passes, @ 50° C	10 @ 10,000	10 @ 20,000	6 @ 20,000	6 @ 20,000	10 @ 20,000	6 @ 20,000	10 @ 20,000	6 @ 20,000	12 @ 20,000	10 @10,000	12 @ 20,000	6 @ 20,000
Dust/Effective Asphalt Ratio, %						50 - X	0.6 -	1.6	8 - B	2. S		
SCB (Semi Circular Bent Test), <u>Jc</u> . KJ/m ² 25°C, aged				Level 1 m Level 2 m								

Background

- Practice of including RAP and/or Recycled Asphalt Shingles (RAS) in new asphalt mixtures has increased in recent years
- economic and environmental benefits
- RAP has been widely used
- Wearing Course: 15%
- Binder Course: 20%
- Base Course: 30%
- RAP is valuable components in asphalt mixtures
- With increased demand and limited supply of aggregate and binder

Concerns

- Hardened and oxidized asphalt binders
- Causing premature cracking in pavements

Background

- Practice of including RAP and/or Recycled Asphalt Shingles (RAS) in new asphalt mixtures has increased in recent years
 - economic and environmental benefits
- RAP has been widely used

- Wearing Course: 15%Binder Course: 20%
- Base Course: 30%
- RAP is valuable components in asphalt mixtures
- With increased demand and limited supply of aggregate and binder Common Solution
- Recycling agents Rejuvenators
- Restore aged binders' properties

Use of RAP and/or RAS in Asphalt Mixtures

• 12.	5 mm Asphalt Mixt	ure		
Mix ID	Mix Code	RAP	RAS	Recycling Agent
Mix 1	70CO	0	0	None
Mix 2	70PG5P	0	5	None
Mix 3	52PG5P-RA 1	0	5	PG 52-28
Mix 4	70PG5P-RA 2	0	5	5% V. D. O.
Mix 5	70PG5P-RA 3	0	5	12% N.O.
Mix 6	70PG5P-RA 4	0	5	20% Softening Agent
Mix 7	70PG5P15RAP-RA 2	15	5	(0.75% + 5%) V. D. O.

Mohammad, L. N., Cooper, Jr., S., and Kim, M., ''Sustainable Materials for Pavement Infrastructure: Design and Performance of Asphalt Mixtures Containing Recycled Asphalt Shingles.'' Louisiana Transportation Research Center, Report No. FHWA/LA.17/594, Baton Rouge, Louisiana, July 2019

Dr. Louay Mohammad, LSU / LTRC

Resea	rch Methodology
	=0.46 LCA Pave
Iron Chloride PG 70-22 +2% FeCl ₃ +1.59	67-22 % FeCl, 6750F

RAP materials – Splitting/Quartering To obtain representative samples

Takeaways

- Integrate Environmental Impact (LCA) with Engineering Performance (BMD Framework) in harmony with key principles of green public procurement
- Illustrative Example --- Use High RAP Level with Reagent Catalyst

 Positive intermediate temperature cracking resistance for mixtures containing up to 50% RAP
 - » Met SCB J_c criteria for BMD
 - No negative impact on permane
 - » LWT test
- Improved mixtures' durability
 Environmental impact analysis
- Compared to conventional mixture M76
 » 30% RAP reduced GWP by 28%
 » 50% RAP reduced GWP by 43%

